Carter, D. C., Ruble, J. R. \& Jeffrey, G. A. (1982). Carbohydr. Res. 102, 59-67.
Gilmore, C. J. (1983). MITHRIL. A Computer Program for the Automatic Solution of Crystal Structures from X-ray Data. Univ. of Glasgow, Scotland.
Goodby, J. W., Marcus, M. A., Chin, E., Finn, P. L. \& Pfannemüller, B. (1988). Liq. Cryst. 3, 1569-1581.
Gray, G. W. \& Goodby, J. W. (1984). Smectic Liquid Crystals. Glasgow, London: Leonard Hill.
Hildreth, J. E. K. (1982). Biochem. J. 207, 363-366.
Jeffrey, G. A. (1984). Mol. Cryst. Liq. Cryst. 110, 221-237.
Jeffrey, G. A. (1986). Acc. Chem. Res. 19, 168-173.
Jeffrey, G. A. \& Maluszynska, H. (1989). Acta Cryst. B45, 447-452.
Jeffrey, G. A. \& Mitra, J. (1983). Acta Cryst. B39, 469-490.
Jeffrey, G. A., Yeon, Y. \& Abola, J. E. (1987). Carbohydr. Res. 169, 1-11.
Koningsveld, H. van, Jansen, J. C. \& Straathof, A. J. J. (1988). Acta Cryst. C44, 1054-1057.

McPherson, A., Koszelak, S., Axelrod, H., Day, J., Williams, R., Robinson, L., McGrath, M. \& Cascio, D. (1986). J. Biol. Chem. 261, 1969-1975.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). multan80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Maluszynska, H. \& Jeffrey, G. A. (1987). Mol. Cryst. Liq. Cryst. 149, 1-15.
Moews, P. C. \& Knox, J. P. (1976). J. Am. Chem. Soc. 98, 6628-6633.
Müller-Fahrnow, A., Zabel, V., Steffa, M. \& Hilgenfeld, R. (1986). J. Chem. Soc. Chem. Commun. pp. 1573-1574.

Pfannemüller, B., Welte, W., Chin, E. \& Goodby, J. W. (1986). Liq. Cryst. 1, 357-370.
Zabel, V., Müller-Fahrnow, A., Hilgenfeld, R., Saenger, W., Pfannemüller, B., Enkelmann, V. \& Welte, W. (1986). Chem. Phys. Lipids, 39, 313-325.

Acta Cryst. (1990). B46, 524-532

The Conformation of Nine-Membered Rings

By Deborah G. Evans and Jan C. A. Boeyens
Department of Chemistry, University of the Witwatersrand, PO Wits, 2050 Johannesburg, South Africa

(Received 21 August 1989; accepted 10 January 1990)

Abstract

Each of the 16 symmetrical conformations of puckered nine-membered rings is characterized by three amplitude-phase pairs which can be mapped onto the surface of a helical tube that closes into a torus. A projection along the tubular axis, assuming constant radii yields a composite map on which all symmetrical forms can be located unequivocally. The symmetrical forms and representative examples from the literature are analyzed quantitatively in terms of the six primitive forms defined by the three symmetry classes of displacement from a regular planar nonagon.

Introduction

The conformation of an N -membered cyclic compound can be described quantitatively as a linear combination of $N-3$ primitive forms (Boeyens \& Evans, 1989). For small ring systems these are typically the same as the well-known low-energy symmetrical forms, but for large N some of them could present chemically unlikely arrangements (Evans \& Boeyens, 1989). As N increases the large number of contributing forms obscures the interpretation of the coefficients in the linear combinations, and for very large rings it is therefore preferable to resort to

0108-7681/90/040524-09\$03.00
different, more intuitive schemes of conformational analysis.

The nine-membered ring is probably the maximum size amenable to analysis by mapping the symmetrical and primitive forms onto an ($N-3$)-dimensional surface, projected into two for graphical interpretation, a procedure described before for six-, sevenand eight-membered rings by Boeyens (1978), Boessenkool \& Boeyens (1980) and Evans \& Boeyens (1988), respectively.

Method

The low-energy forms of nine-membered rings and their modes of interconversion were first analyzed by Hendrickson (1964, 1967).

The set of symmetrical conformations need not be limited to the low-energy cycloalkane conformations. Steric factors and crystal-packing forces can force a ring to adopt a conformation other than that of the isolated entity. Sixteen symmetrical conformations, some based on molecular models, have been identified here, including the six conformations detailed by Hendrickson (1964) or postulated as intermediates. These forms are not representative of a particular chemical system, but their bond lengths and angles are within the limits of chemical viability, and (C) 1990 International Union of Crystallography

Table 1. Torsion angles $\left({ }^{\circ}\right)$ and puckering amplitudes
(\AA) of the classical forms

Symbol	Symmetry	ω_{1}	ω_{2}	ω_{3}	ω_{4}	ω_{5}	q_{2}	q_{3}	q_{4}
BC	C_{3}	-114	0	114	-114	0	0.00	$1 \cdot 25$	0.00
TBC	D_{3}	-57	130	-57	- 57	130	0.00	1.24	0.00
CC	C_{5}	-69	108	-139	83	0	0.00	0.53	0.87
TCC	C_{2}	-54	126	-115	80	-77	0.00	0.53	0.87
C	C_{5}	121	-30	-80	117	0	0.54	$1 \cdot 19$	0.22
TC	C_{2}	-70	100	0	-88	125	0.68	1.04	0.30
B	C,	- 121	39	-80	117	0	1.35	0.39	0.58
TB	C_{2}	-70	108	-43	72	-143	1.25	$0 \cdot 36$	0.53
BB	C,	67	48	-10	-83	0	2.15	0.00	0.00
TBB	C_{2}	80	-70	-10	-34	155	2.05	0.00	0.00
CB	C,	80	- 108	0	90	0	1.64	0.67	0.43
TCB	C_{2}	-72	79	44	-105	93	1.29	0.82	0.45
BC'	C.	65	51	-140	82	0	0.61	1.09	0.25
TBC"	C_{2}	-43	124	-88	-28	117	0.64	$1 \cdot 14$	$0 \cdot 24$
$\mathrm{CC}^{\prime \prime}$	C	-98	72	-134	117	0	0.85	$0 \cdot 40$	0.87
TCC ${ }^{\prime \prime}$	C_{2}	-62	120	-84	91	-124	0.90	0.43	0.93

Table 2. Cartesian coordinates of the classical forms

x	y	z	x	y	z
	BC		TBC		
0.0000	1.5073	0.5937	-0.0000	$2 \cdot 2080$	0.0197
$1 \cdot 2671$	1.6260	-0.2920	1.2245	1.3889	0.5048
2.0434	0.2833	-0.2960	1.8046	0.3652	-0.5056
1.3088	-0.7595	0.5862	1.9119	- 1.0998	-0.0076
0.7709	-1.9181	-0.2937	0.5969	-1.7458	$0 \cdot 5012$
-0.7801	-1.9137	-0.2914	-0.5911	-1.7516	-0.4959
-1.3088	-0.7505	0.5878	-1.9087	-1.1071	0.0084
-2.0426	0.2934	-0.2938	-1.8071	0.3616	0.4936
-1.2587	1.6317	-0.2998	-1.2310	1.3806	-0.5213
$\mathrm{BC}^{\prime \prime}$			TBC ${ }^{\prime \prime}$		
0.0000	1.9444	-0.6867	-0.0000	2.2052	0.0013
1.3199	1.7364	0. 1009	1.2637	1.3869	-0.2239
1.5876	0.2984	0.6167	1.7072	0.0500	0.6222
1.4605	-0.8375	-0.4317	1.9239	-1.1028	-0.3785
0.7848	-2.1452	0.0572	0.5365	-1.7884	-0.5580
-0.7662	-2.1526	0.0596	-0.5362	- 1.7888	0.5583
-1.4557	-0.8523	-0.4298	-1.9238	-1.1023	0.3786
-1.5904	0.2844	0.6168	-1.7073	0.0500	-0.6228
-1.3405	1.7241	0.0969	-1.2640	1.3853	$0 \cdot 2228$
	CC		TCC		
0.0000	2.3755	-0.1692	0.0000	1.9299	-0.3678
$1 \cdot 3145$	1.6721	0.2585	1.4228	1.7575	-0.0049
1.6138	0.3142	-0.4287	1.7214	0.3581	0.3635
1.4627	-0.9465	0.4619	1.5350	-0.8299	-0.4660
0.7943	-2.1757	-0.2073	0.6506	-1.9882	0.3649
-0.7566	-2.1915	-0.2051	-0.8120	-1.9893	-0.1841
-1.4480	-0.9748	0.4638	-1.7786	-1.0434	0.1800
-1.6271	0.2809	-0.4288	-1.8746	0.3957	-0.3624
-1.3535	1.6458	0.2550	-0.8647	1.4095	0.4680
	$\mathrm{CC}^{\prime \prime}$		TCC ${ }^{\prime \prime}$		
0.0000	1.8000	0.6200	0.0000	2.1760	$0 \cdot 0000$
1.3200	1.6500	-0.2180	1.1200	1.3000	0.7400
1.7500	0.2000	0.0330	1.9100	0.4400	-0.3100
1.0000	-1.0000	-0.5950	1.8500	-1.0800	0.0150
0.7600	-2.1000	0.4727	0.5700	-1.7400	-0.5250
-0.7600	-2.1000	0.4727	-0.5700	-1.7400	0.5250
-1.0000	-1.0000	-0.5950	-1.8500	-1.0800	-0.0150
-1.7500	0.2000	0.0330	-1.9100	0.4400	0.3100
-1.3200	1.6500	-0.2180	-1.1200	$1 \cdot 3000$	-0.7400
	CB		TCB		
-0.7770	0.3482	1.5127	0.0000	2.0100	-0.0195
-0.7542	-0.9407	2.3752	1.0102	1.1410	0.8580
0.5605	-1.2212	$3 \cdot 1480$	2.0917	0.4678	0.0200
1.4280	-2.3923	2.6185	1.6271	-0.8175	-0.7075
0.8652	-3.1581	1.3927	0.7544	-1.7920	0.1589
1.2834	-2.6186	0.0000	-0.7544	-1.7920	-0.1589
2.2336	-1.3927	0.0000	-1.6271	-0.8175	0.7075
1.5510	0.0000	0.0000	-2.0917	0.4678	-0.0200
0.0000	0.0000	0.0000	-1.0102	1-1418	-0.8585

Table 2 (cont.)

x	y	z	x	y	z
BB			TBB		
-0.6744	-1-2927	0.2740	-0.0000	1.6838	0.0228
-0.1576	-2.5181	-0.5242	0.7621	0.7805	-0.9815
-0.4334	-2.5043	-2.0504	2.0872	0.3038	-0.3315
0.3143	-1.4200	-2.8694	1.7631	-0.7052	0.8009
1.8361	-1.2895	-2.5999	0.2556	-1.0658	0.6400
2.3840	-2.0792	-1.3827	-0.2036	-1.0949	-0.6400
2.2336	-1.3927	0.0000	-1.7289	-0.8213	-0.8017
1.5510	0.0000	0.0000	-2.1144	0.1727	0.3248
0.0000	0.0000	0.0000	-0.8210	0.7464	0.9602
B			TB		
-0.5496	-1.0963	-0.9336	-0.0000	1.9849	0.0012
-1.4920	-2.0743	-0.1847	1.0246	1.1369	-0.8169
-0.9944	-3.5411	-0.2651	2.0461	0.5139	0.1060
0.5502	-3.6398	-0.1646	1.9295	-1.0317	0.2960
1.2447	-3.3182	-1.5136	0.5142	-1.4520	0.4770
2.1488	-2.0614	-1.4197	-0.4440	-1.4800	-0.4770
2.1348	-1.4369	0.0000	-1.8809	-1.1420	-0.2960
1.5510	0.0000	0.0000	-2.0868	0.3942	-0.1060
0.0000	0.0000	0.0000	-1.1030	1.0757	0.8160
C			TC		
-0.5618	-1.2198	0.6999	-0.0000	2.0625	0.0094
-1.4932	-2.0784	-0.1951	1.1409	1.2606	0.6882
-0.9896	-3.5392	-0.3295	2.1213	0.4814	-0.2267
0.5532	-3.6386	-0.2046	1.8944	-1.0433	-0.3980
1.2694	-3.3081	-1.5401	0.7006	-1.6863	0.3550
2.1717	-2.0520	-1.4233	-0.6797	-1.6977	-0.3524
2.1348	-1.4369	0.0000	-1.8827	-1.0695	0.3985
1.5510	0.0000	0.0000	-2.1319	0.4511	0.2219
0.0000	0.0000	0.0000	-1.1629	1.2413	-0.6958

exclude arrangements with interpenetrating nonbonded atoms. Pairs of forms, with C_{2} and C_{s} symmetry, having the same ratio of the puckering amplitudes, formally constitute pseudorotational pathways (Boessenkool \& Boeyens, 1980; Evans \& Boeyens, 1988). It is noted that in the cycloalkanes, where the C_{s} forms are of high energy, these pathways are not low-energy interconversion modes and hence are not pseudorotational cycles in the sense described by Dale (1973b). The proposed classical nomenclature of the C_{s} forms is derived from the shapes of the forms in projection. Their pseudorotational partners are described as twist forms. Torsion angles of the classical forms are given in Table 1 and the forms are illustrated in Fig. 1. Cartesian coordinates are given in Table 2.
There are six Cremer \& Pople (1975) puckering parameters for a nine-membered ring - three amplitude and phase-angle pairs $\left(q_{m}, \varphi_{m}\right) ; m=2,3,4$. The puckering amplitudes of the classical forms are given in Table 2. As noted for eight-membered rings (Evans \& Boeyens, 1988), when $q_{m}=0, \varphi_{m}$ has no meaning. The geometrical interpretation of the six parameters is shown in Fig. 2.
This definition may be interpreted as mapping the forms onto:
(a) A series of tori lying at positions determined by q_{2} and φ_{2} on a major torus.
(b) A tube, helically coiled about a torus defined by $q_{2}, \varphi_{2}, q_{4}$ and $\varphi_{4} \cdot q_{3}$ and φ_{3} define a point on this tube.

The former interpretation is the logical extension of the eight-membered rings mapped onto series of tori located on a sphere, whereas the latter interpretation has the advantage of mapping the forms onto a continuous tube, shown in Fig. 3.

A two-dimensional projection of either surface is achieved by projecting all forms onto $\varphi_{2}=0$. The forms then map onto a torus given by $q_{3}, q_{4}, \varphi_{3}$ and φ_{4}. A polar projection of this composite torus at φ_{2} $=0$, with the radial axis along the $\varphi_{3}=0$ circle, is shown in Fig. 4. Pseudorotational cycles appear as spirals. In three dimensions these may be visualized as helices on a minor torus stretched around the major torus, or as a helix wound around a tube, coiled in space. Overlap of the forms occurs at all positions S, S^{\prime}, T and T^{*}. The BB-TBB cycle is illustrated as the circle $J-K$, where φ_{4} is replaced by φ_{2}, to avoid projection of all forms to a point. The subscripts indicate the atom through which the symmetry element passes.

Results and discussion

The TBC-BC and TBB-BB pseudorotational cycles map onto mutually perpendicular circles, and are shown in Figs. 5 and 6. The CC and TCC forms map onto the torus defined by $q_{3}, q_{4}, \varphi_{3}$ and φ_{4}. A polar projection of this surface is shown in Fig. 7. All other pseudorotational cycles map onto the complex surface and are best viewed as two-dimensional projections in Figs. 8-12. The least confusing projecton is onto the surface given by $q_{4}=0$. A projection of the resulting torus, defined by $q_{2}, q_{3}, \varphi_{2}$ and φ_{3}, is
taken at fixed amplitudes with the phases along the Cartesian axes. The angular values are denoted by the integer k of $k \pi / 18$. In all these illustrations, the atomic numbering starts at the top of each polygon and proceeds clockwise. The signs of the endocyclic torsion angles are indicated. In Figs. 8-12, the form with $\varphi_{4}=0$ is indicated. The value of φ_{4} increases in steps of $\pi / 18$ along each pseudorotational cycle.

The angular positions of all symmetrical forms can be expressed as integral multiples of $\pi / 18$. Enantiomeric forms lie at angular positions

$$
\varphi_{m}^{\prime}=\varphi_{m}+\pi
$$

Each classical form X is represented as $X n$, where n is the number of the atom through which the symmetry element (C_{s} or C_{2}) passes. The mirror image is denoted $\bar{X} \bar{n}$, as for seven-membered rings (Boessenkool \& Boeyens, 1980). The endocyclic torsion-angle change along all pseudorotational pathways takes place gradually, decreasing in positive value to negative values, often through zero. The symmetry element through an atom becomes a symmetry element through an adjacent bond when moving along any pseudorotational cycle, except in the BB-TBB cycle, where the symmetry element through an atom progresses to a symmetry element through an adjacent atom, as observed in the B-TB cycle of seven-membered rings (Boessenkool \& Boeyens, 1980).
A quantitative description of an intermediate form in terms of the conformational surface is clearly not possible, but, a mixed form can be expressed as a linear combination of primitive forms (Evans \&

boat-chair

chair-chair

twist-boat-chair

twist-chair-chair

twist-boat-boat

twist-boat

chair

chair-chair "

boat-chair "

twist-chair

twist-chair-chair "

twist-boat-chair "

Fig. 1. Symmetrical forms of ninemembered rings.

Fig. 2. Geometrical interpretation of the puckering parameters.

Fig. 3. The complex surface for the mapping of nine-membered rings.

Fig. 4. A two-dimensional projection of the surface. $S=(\mathrm{CC}$, $\left.\mathrm{CC}^{\prime}, \mathrm{BC}^{\prime \prime}, \mathrm{B}\right), S^{\prime}=(\mathrm{CB}, \mathrm{C}), T=\left(\mathrm{TCC}, \mathrm{TCC}^{\prime \prime}, \mathrm{TBC}{ }^{\prime \prime}, \mathrm{TB}\right), T^{\prime}$ $=(\mathrm{TCB}, \mathrm{TC}), K=\mathrm{BB}, J=\mathrm{TBB}$.

Boeyens, 1989). Any nine-membered ring is a linear combination of the six primitive forms, illustrated in Fig. 13. The E_{4} representations do not correspond with any classical forms. These primitive forms require bond lengths significantly different from those of common chemical rings. The remaining 12 classical forms are linear combinations of the six basis forms in specific relative proportions. An identification procedure to establish these forms, based on the values of their linear coefficients and phase angles, has been included as a subroutine of the program CONFOR (Evans \& Boeyens, to be published). The description of the classical forms as linear combinations on the primitive basis is included in Table 5. The relative contributions from each $E_{m}^{\prime \prime}$ representation, and hence the shape of the puckered ring, depend only on the ratios of the q_{m} values. The

Fig. 5. The TBC-BC pseudorotational cycle.

Fig. 6. The TBB-BB pseudorotational cycle. The circle is represented linearly for clarity.

Fig. 7. The TCC-CC pseudorotational cycle.

Fig. 8. The TCB-CB pseudorotational cycle.

Fig. 9. The TB-B pseudorotational cycle.

Fig. 10. The TC-C pseudorotational cycle.

Fig. 11. The TCC"-CC" pseudorotational cycle.

Fig. 12. The $\mathrm{TBC}^{\prime \prime}-\mathrm{BC}^{\prime \prime}$ pseudorotational cycle.
conformations of the nine-membered rings can therefore be mapped onto a normalized surface, independent of ring type and extent of pucker, to avoid a definition of classical forms for each chemical class of rings (Petit, Dillen \& Geise, 1983).

Application

Conformational analyses, reviewed by Boeyens \& Dobson (1987), show that most nitrogen- and sulfurdonor macrocycles adopt either a [333] or a [234] conformation in terms of the Dale (1973a,b) formalism. The results of a puckering analysis of a number of nine-membered macrocycles, characterized in Fig. 14 and Table 3, are given in Table 4.

On the basis of Fig. 5, the structures $(a)-(d)$ are described as twist-boat-chair forms with some distortion to the boat-chair forms. Structures (e) and (f) cannot be correlated with any classical forms on the basis of the q_{m} and φ_{m} values. These intermediate forms are best described as a linear combination, as shown in Table 5.

Fig. 13. Primitive forms of nine-membered rings.

Fig. 14. Nitrogen- and sulfur-donor macrocycles.

Table 3. Endocyclic torsion angles $\left(^{\circ}\right.$) of nitrogen- and sulfur-donor macrocycles

The macrocycles $(a)-(f)$ are as defined in Fig. 14.

	(a)	(b)	(c)	(d)	(e)	(f)
ω_{1}	59	-131	134	-55	-116	-117
ω_{2}	54	58	-45	-49	50	50
ω_{3}	-131	55	-71	144	75	75
ω_{4}	59	-131	134	-74	-85	-94
ω_{5}	56	59	-44	-43	-44	-31
ω_{6}	-132	55	-70	136	150	141
ω_{7}	57	-131	133	-72	-67	-75
ω_{8}	56	59	-46	-51	-38	-36
ω_{9}	-132	55	-71	120	98	98

Table 4. Puckering analysis of nitrogen- and sulfurdonor macrocycles

Ring	$q_{2}(\AA)$	$\varphi_{2}\left({ }^{\circ}\right)$	$q_{3}(\AA)$	$\varphi_{3}\left({ }^{\circ}\right)$	$q_{4}(\AA)$	$\varphi_{4}\left({ }^{\circ}\right)$
(a)	0.01	11	1.60	157	0.01	180
(b)	0.00	18	1.59	23	0.00	46
(c)	0.02	275	1.25	206	0.01	258
(d)	0.09	337	1.36	335	0.11	352
(e)	0.60	148	1.20	354	0.38	20
(f)	0.51	156	1.20	356	0.36	16

Table 5. The linear coefficients of some intermediate forms $[(a)-(f)]$ and of the 16 classical conformations

The phase angles $\left({ }^{\circ}\right)$ of the basis forms, denoted as k of $k \pi / 18$, are given in parentheses.

	Primitive form					
	$E_{2}^{\prime \prime}$		$E_{3}^{\prime \prime}$		$E_{4}^{\prime \prime}$	
Ring	Cos form	Sin form	Cos form	Sin form	Cos form	Sin form
(a)	$0 \cdot 00$	$0 \cdot 00$	0.25 (18)	0.75 (15)	0.00	0.00
(b)	$0 \cdot 00$	$0 \cdot 00$	$0 \cdot 22$ (0)	0.78 (3)	$0 \cdot 00$	0.00
(c)	$0 \cdot 00$	0.00	0.13 (18)	0.86 (21)	0.00	0.00
(d)	0.04 (34)	0.02 (33)	0.15 (36)	0.73 (33)	0.01 (36)	0.05 (35)
(e)	0.05 (14)	0.23 (15)	0.44 (36)	$0 \cdot 11$ (33)	0.17 (2)	0.00
(f)	0.14 (16)	$0 \cdot 11$ (15)	0.51 (36)	0.07 (33)	$0 \cdot 10$ (2)	0.07 (1)
BC	0	0	1.00	0	0	0
TBC	0	0	0	1.0	0	0
CC	0	0	0.38	0	0.62	0
TCC	0	0	0	0.38	0	0.62
C	0.28	0	0.62	0	$0 \cdot 10$	0
TC	0	0.34	0	0.52	0	0.14
B	$0 \cdot 58$	0	0.17	0	0.25	0
TB	0	0.58	0	$0 \cdot 17$	0	0.25
BB	1.00	0	0	0	0	0
TBB	0	1.0	0	0	0	0
CB	0.60	0	0.25	0	0.15	0
TCB	0	$0 \cdot 50$	0	$0 \cdot 32$	0	0.18
$\mathrm{BC}^{\prime \prime}$	0.31	0	$0 \cdot 56$	0	0.13	0
TBC"	0	$0 \cdot 32$	0	0.56	0	0.12
CC'	0.40	0	$0 \cdot 19$	0	0.41	0
TCC ${ }^{\prime \prime}$	0	0.40	0	0.19	0	0.41

The linear coefficients also quantify the distortion of the rings $(a)-(d)$ from the TBC form. The results show that the conformations of rings $(a)-(d)$ are similar, and this form can be correlated with the [333] conformation of the Dale (1973a) formalism. The 9 -ane- N_{3} macrocycle (ring c) shows a smaller distortion to the BC form. The $9-$ ane $-\mathrm{N}_{2} \mathrm{~S}$ of the $\mathrm{Ni}^{\mathrm{II}}$ complex shows a slight distortion from a form on the BC-TBC cycle. The similar conformations of (e) and (f) can be correlated with the [234] conformation of the Dale (1973a) formalism.

These results corroborate previous observations (Boeyens \& Dobson, 1987; Dobson, 1986): 9-ane- N_{3}, 9 -ane- S_{3} and 9 -ane- $\mathrm{N}_{2} \mathrm{~S}$ when complexed with $\mathrm{Ni}^{3 \mathrm{I}}$ adopt a similar conformation along the $\mathrm{BC}-\mathrm{TBC}$ pseudorotational cycle. When 9 -ane- $\mathrm{N}_{2} \mathrm{~S}$ is complexed with $\mathrm{Cu}^{\mathrm{II}}$, a different intermediate conformation is energetically preferred.

Concluding remarks

This communication completes the survey of ring conformations and the mapping of symmetrical forms on geometrical surfaces for graphical analysis of unknown configurations, from crystallographic coordinates. The procedure has been automated in the meantime and our FORTRAN program, CONFOR, which identifies the nearest symmetrical form and quantitatively defines the conformation as a linear combination of primitive forms, is available from the authors.

References

Boessenkool, I. K. \& Boeyens, J. C. A. (1980). J. Cryst. Mol. Struct. 10, 11-18.

Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.
Boeyens, J. C. A. \& Dobson, S. M. (1987). In Stereochemistry of Organometallic and Inorganic Compounds, Vol. 2, edited by I. Bernal. Amsterdam: Elsevier.
boeyens, J. C. A., Dobson, S. M. \& Hancock, R. D. (1985). Inorg. Chem. 24, 3073-3076.
Boeyens, J. C. A. \& Evans, D. G. (1989). Acta Cryst. B45, 577-581.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Dale, J. (1973a). Acta Chem. Scand. 27, 1115-1129.
Dale, J. (1973b). Acta Chem. Scand. 27, 1130-1148.
Dobson, S. M. (1986). A Crystallographic and Thermodynamic Study of Macrocyclic Complexes, PhD Thesis, Univ. of the Witwatersrand, South Africa.
Evans, D. G. \& Boeyens, J. C. A. (1988). Acta Cryst. B44, 663-671.
Evans, D. G. \& Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.
Glass, R. S., Wilson, G. S. \& Setzer, W. N. (1980). J. Am. Chem. Soc. 102, 5068-5069.
Hart, S. M., Boeyens, J. C. A., Michael, J. P. \& Hancock, R. D. (1983). J. Chem. Soc. Dalton Trans. pp. 1601-1606.

Hendrickson, J. B. (1964). J. Am. Chem. Soc. 86, 4854-4866.
Hendrickson, J. B. (1967). J. Am. Chem. Soc. 89, 7047-7061.
Petit, G. H., Dillen, J. \& Geise, H. J. (1983). Acta Cryst. B39, 648-651.
Setzer, W. N., Ogle, C. A., Wilson, G. S. \& Glass, R. S. (1983). Inorg. Chem. 22, 266-271.
Zompa, L. J. \& Margulis, T. N. (1978). Inorg. Chim. Acta, 28, L157-159.

Acta Cryst. (1990). B46, 532-538

Electrostatic Properties of Cytosine Monohydrate from Diffraction Data

By H.-P. Weber* and B. M. Craven \dagger
Crystallography Department, University of Pittsburgh, Pittsburgh, PA 15260, USA

(Received 26 September 1988; accepted 22 January 1990)

Abstract

The charge density distribution in deuterated cytosine monohydrate [$4-\left({ }^{2} \mathrm{H}_{2}\right.$)-amino- $2(1 \mathrm{H})-\left(1-{ }^{2} \mathrm{H}\right)$ pyrimidinone], $\quad \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{D}_{3} \mathrm{~N}_{3} \mathrm{O} . \mathrm{D}_{2} \mathrm{O}, \quad M_{r}=134 \cdot 15$, monoclinic, $P 2_{1} / c, a=7.714$ (1), $b=9.825(1), c=$ $7.506(2) \AA, \quad \beta=100.52(1)^{\circ}, \quad Z=4, \quad$ has been determined from 1432 X-ray reflections $[\sin \theta / \lambda<$ $1 \cdot 15 \AA^{-1}$, Mo $K \alpha, \quad \lambda=0.7093$ (1) \AA] collected at 82 (2) K. Least-squares structure refinement assuming Stewart's rigid pseudoatom model gave $R(F)=$ 0.041 , with all nuclear positions and H/D anisotropic thermal parameters having fixed values previously determined by neutron diffraction. The cytosine and water molecules are both electrically neutral within

^[* Present address: Institute de Cristallographie, Université de Lausanne, BSP Dorigny, CH-1015, Lausanne, Switzerland. \dagger To whom correspondence should be addressed.]

experimental error (0.09 e). Molecular dipole moments are $\mu=8.0(1.4)$ debye for cytosine and $2 \cdot 3$ (3) debye for water. For the doubly hydrogenbonded cytosine dimer (N1—D1 \cdots N3', N4$\mathrm{D} 4 \cdots \mathrm{O} 2^{\prime}$) isolated from the crystal, the electrostatic energy of interaction is estimated to be $-96(27) \mathrm{kJ} \mathrm{mol}^{-1}$. Maps of the electrostatic potential for molecules isolated from the crystal indicate that the electronegativity of the hydrogenbonding acceptor sites can be ranked with the water O atom, cytosine $\mathrm{N}(3)$ and carbonyl $\mathrm{O}(2)$ in decreasing order.

Introduction

The crystal structures of cytosine and its monohydrate have received considerable attention because of the importance of cytosine as a component of the © 1990 International Union of Crystallography

